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[1] Interphase mass transfer in variable aperture fractures occurs in many problems where
two immiscible fluids are present, such as dissolution of dense nonaqueous phase
liquids into groundwater, dissolution of CO, in deep saline aquifers, and evaporation of
trapped water by flowing gas during natural gas production. Typically, one fluid is
entrapped by capillary forces and resides in immobilized regions whose distribution

and geometry are controlled by the relative influence of capillary, gravitational,

and viscous forces within the fracture. For the case of fractures bounded by a low
porosity/permeability matrix, interphase mass transfer occurs predominantly owing to
diffusive/advective transport from the entrapped phase interface into the phase flowing
through the fracture. We explore the relative influence of the initial entrapped phase
geometry and mean flowing phase velocities on the dissolution of the entrapped phase.
Our systematic simulations use a percolation-based model of phase invasion and
depth-averaged models of flow, transport, and mass transfer. The invasion model provides
a physically based distribution of entrapped phase within the fracture and the mass transfer

model implicitly calculates interphase mass transfer from discrete regions of entrapped
phase without the need for empirical mass transfer relationships. Results demonstrate
behavior across a wide range of initial entrapped phase distributions, with entrapped
phase saturations ranging from zero to near the percolation threshold. Interfacial area
evolves with a near-linear dependence on entrapped phase saturation during dissolution in
each simulation, and fracture-scale intrinsic mass transfer rate coefficients exhibit a
nonlinear dependence on Peclet number and a negligible dependence on entrapped phase
saturation. These observations provide a basis for the development of constitutive
relationships that quantify interphase mass transfer in variable aperture fractures as a
function of entrapped phase saturation and flow rate; coarse-grid dissolution simulations
using these constitutive relationships demonstrate good agreement with results from

the high-resolution mechanistic simulations.
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1. Introduction

[2] Mass transfer between two immiscible phases within
fractures occurs in problems such as the dissolution of dense
nonaqueous phase liquids (DNAPLs) into groundwater
[e.g., Kueper and Mcwhorter, 1991; Dickson and Thomson,
2003], dissolution of CO, in deep saline aquifers [e.g., Yang
et al., 2005], and evaporation of trapped water by flowing
gas during natural gas production [e.g., Mahadevan et al.,
2007]. Though these problems each pose unique challenges,
they share fundamental processes that control interphase
mass transfer rates. In each case, one phase flows through
fractures that are partially occupied by a second immiscible
phase, which is often entrapped by capillary forces. Inter-
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phase mass transfer occurs across the interfaces between the
two fluid phases and is driven by advective and diffusive
transport of the dissolving phase within the fracture. In
addition, for fractures in porous and/or permeable rocks and
clays, interphase mass transfer will occur across the inter-
face adjacent to the matrix [e.g., Parker et al., 1994;
O’Hara et al., 2000]. The relative magnitude of interphase
mass transfer into the fracture versus the matrix will depend
on the porosity/permeability of the matrix, flow rates
through fractures and distribution of interfacial area within
individual fractures. In this paper we focus on interphase
mass transfer within the fracture, which will be dominant in
rocks with low effective porosity such as granites and
shales. In these cases, the distribution and geometry of
entrapped phase regions will strongly influence transport in
the flowing phase and thus mass transfer rates.

[3] Within individual fractures, the distribution and struc-
ture of the entrapped phase are controlled by the relative
influence of capillary, gravitational, and viscous forces
during the initial displacement process. Slow displacement
into a horizontal fracture (i.e., negligible viscous and
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gravitational forces) results in an advancing interface that is
controlled completely by capillary forces, which are pro-
portional to the curvature of the interface. Two principal
radii of curvature characterize interfacial curvature: out-of-
plane curvature, which is controlled by surface wettability
and the magnitude of the local aperture, and in-plane
curvature, which is related to a characteristic length scale
of aperture variability. The effect of out-of-plane curvature
has been represented using standard invasion percolation
models with invasion pressures inversely proportional to the
local fracture aperture [Chandler et al., 1982; Wilkinson and
Willemsen, 1983]. However, this approach ignores the
competing influence of in-plane curvature, which tends to
smooth interfaces during invasion. Glass et al. [1998]
showed that a modified invasion percolation (MIP) algo-
rithm that accounts for in-plane curvature better represents
experimental observations of immiscible fluid displacement
in fractures. More recent MIP simulations of capillary-
dominated invasions over a range of parameter space
demonstrated the relative influence of in-plane and out-of-
plane curvature and the wide range of possible entrapped
phase structures and entrapped phase saturations [Glass et
al., 2003].

[4] In addition to the influence of capillary forces on
phase displacement and entrapped phase distribution, pres-
sure gradients within the invading/defending fluids, due to
gravitational or viscous forces, can either stabilize or
destabilize the advancing interface. A stabilizing gradient
will reduce the amount of capillary-induced interfacial
roughness and lead to decreased trapping during the dis-
placement, whereas a destabilizing gradient will lead to
development of fingers and substantially larger saturations
of the entrapped phase [e.g., Xu et al., 1998]. Clearly an
effective model of interphase mass transfer must adequately
account for a wide range of possible entrapped phase
geometries.

[s] The complexity of local interphase mass transfer
processes is usually lumped into bulk empirical parameters
when quantifying mass transfer rates from experiments in
columns of porous media [e.g., Miller et al., 1990] or single
fractures [Dickson and Thomson, 2003]. This is largely
because measuring the distribution of the entrapped phase
in these systems is difficult, not because small-scale pro-
cesses are deemed unimportant. Efforts to quantify interfa-
cial areas using light transmission in two-dimensional
micromodels [e.g., Detwiler et al., 2001; Knutson et al.,
2001] and X-ray computed microtomography in small cores
[e.g., Brusseau et al., 2008; Culligan et al., 2006] have
begun to provide insights into the connection between
interfacial area and mass transfer rates. However, at the
column or core scale, experiments are typically used to
relate interphase mass transfer rates to the difference
between some average aqueous phase concentration (c¢) of
the dissolving phase and the equilibrium concentration (c,,)
[e.g., Powers et al., 1994]:

Oc
Va:kai(ceq—c) (1)

where V is the mean aqueous phase velocity, & (LT ") is an
intrinsic mass transfer coefficient and a; (L") is the specific
interfacial area between the two phases (interfacial area per
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volume of medium). Because it is difficult to quantify q;
in column or single fracture experiments, the product ka;
is often represented as a bulk mass transfer rate coefficient,
K (T7"), and calculated using experimental measurements
of effluent concentration with the solution for (1) at the
effluent end of the experimental systems (L) [e.g., Powers

et al., 1994]:
K= — 14 _ Gl
(L) ln(l Ceq ) @

Estimates of K obtained from (2) provide a measure of the
steady state mass transfer rate for the experiment that is
implicitly tied to the distribution of the entrapped phase
within the sample. Thus applying this model in different
samples or at different scales requires that the distribution of
the entrapped phase is similar. This may be reasonable in
well-controlled laboratory experiments in homogeneous
porous media, where an entrapped phase at residual
saturation is likely to reside in small discrete ganglia
occupying single to several pores [Mayer and Miller, 1996].
However, in variable aperture fractures [Becker et al., 2003;
Detwiler et al., 2001; Glass and Nicholl, 1995] and two-
dimensional micromodels [Chomsurin and Werth, 2003; Jia
et al., 1999; Kennedy and Lennox, 1997], the regions of
entrapped phase have been shown to span a wide range of
length scales and exhibit a range of morphologies depend-
ing on fluid and pore space properties and the forces acting
during migration of the entrapped phase. In a previous study
[Glass et al., 2003], we carried out a detailed parametric
study of capillary-driven invasions in variable aperture
fractures using a modified invasion percolation (MIP)
model that predicts observed experimental behavior quite
well [Glass et al., 1998]. The results demonstrated possible
initial entrapped phase saturations that ranged from near the
percolation threshold to zero depending on surface
wettability, surface tension, aperture variability and spatial
correlation. These results suggest potential challenges in
extending mass transfer rates estimated from experiments in
one fracture to different fractures and fluids, which may
lead to widely varying entrapped phase structures and
saturations. This motivates a detailed study of the influence
of entrapped phase geometry on interphase mass transfer.
[6] To investigate the influence of entrapped phase mor-
phology on interphase mass transfer, we use previously
developed and tested computational models of phase inva-
sion [Glass et al., 1998] and entrapped phase dissolution
[Detwiler et al., 2001] to systematically investigate the
relative influence of flow rate and a range of fracture and
fluid properties as quantified by a set of dimensionless
parameters. These mechanistic models explicitly represent
the physics of fluid flow and mass transfer at the scale of
individual blobs of entrapped phase, and thus require no
empirical relationships to quantify mass transfer within the
fracture. The results of parametric simulations carried out in
synthetic aperture fields suggest that despite the wide range
of spatial structure/morphologies of the dissolving entrap-
ped phase, a set of constitutive relationships based upon the
areal saturation of the entrapped phase, S,, and Peclet
number quantify transient dissolution rates from the frac-
tures quite well. These relationships effectively represent
the complexities of interphase mass transfer from a broad
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Figure 1. Schematic of two fluid phases within a rough-
walled fracture: (a) Cross section defining the aperture-
induced radius of curvature, rq, local aperture, b, contact
angle, o, and convergence/divergence angle, (. (b) Plan
view (normal to fracture plane) defining the in-plane radius
of curvature, r,, and included angle ~ (from invading
phase).

range of geometries and hence can serve as a basis for
representing mass transfer relationships in large individual
fractures or networks of discrete fractures.

[7] The remainder of the paper is organized as follows:
Section 2 presents an overview of the mechanistic model,
including the MIP algorithm used for initial phase invasion
and interface recession due to dissolution and the depth-
averaged flow and transport algorithms. Section 3 details
the computational interphase mass transfer experiments.
Section 4 discusses the results from the computational
experiments and introduces constitutive relationships for
interfacial area, relative permeability and interphase mass
transfer rates. Section 5 applies the constitutive models to
coarse grid representations of the initial entrapped phase
geometries used for the mechanistic simulations and com-
pares results from the two modeling approaches. Section 6
provides concluding remarks.

2. Model Overview

[8] The simulations presented in this paper use two
previously developed mechanistic computational models
that have each been tested against experimental data. The
first model uses the MIP approach to simulate migration of
wetting/nonwetting fluids, where calculated local capillary
pressures reflect both in-plane and out-of-plane curvature of
fluid interfaces [Glass et al., 1998]. The second model uses
depth-averaged approximations of flow and transport equa-
tions within a fracture occupied by an entrapped, slowly
dissolving phase. The dissolving phase is assumed to be at
local equilibrium at the fluid-fluid interfaces, which leads to
local mass transfer rates that are explicitly controlled by the
geometry of the entrapped phase and the diffusive/advective
transport of the dissolving phase [Detwiler et al., 2001]. The
assumption of local equilibrium at the fluid-fluid interfaces
is widely accepted [e.g., Dillard and Blunt, 2000; Knutson
et al., 2001; Pan et al., 2007] and reasonable when spatial
resolution is sufficient to resolve individual regions of
entrapped phase; it is the difficulty of explicitly representing
interfaces in large-scale models that necessitates the use of
mass transfer correlations. By explicitly representing the
evolution of fluid-fluid interfaces and the resulting influence
on flow, transport and local mass transfer, our modeling
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approach requires no empirical mass transfer correlations.
Finally, the interface movements that accompany mass
removal from entrapped regions can be computed explicitly
using the MIP model. Thus in our approach, local interface
movement is controlled by local capillary forces, which are
treated rigorously at every interface segment of each
entrapped blob, while mass transfer rates integrated over
the entire interface of an entrapped blob constrain the rate of
mass removal from each blob. In this section we present a
brief overview of each of the models (refer to Glass et al.
[1998] and Detwiler et al. [2001] for detailed descriptions of
the phase invasion and dissolution models) and outline the
scaling arguments [Glass et al., 2003] that support our
choice of parameters.

2.1.

[9] The combination of capillary, gravitational, and vis-
cous forces controls phase migration during invasion and
the subsequent interface movement due to mass transfer
from the entrapped phase into the flowing phase. In a gross
sense, the nonwetting phase will reside in larger apertures
and the wetting phase in smaller ones; however these
tendencies are modified by connectivity between similar
aperture values in the fracture resulting from a spatially
correlated aperture field. Glass et al. [1998] used the
Laplace-Young equation, which relates surface tension (7)
and interfacial curvature, as quantified by the two principal
radii of curvature, r; and r,, to the pressure jump across the
curved interface (P.) as the basis for the MIP algorithm for
simulating invasion of immiscible fluids in variable aperture
fractures:

Phase Invasion/Recession

J (l + i) (3)

. n

[10] In equation (3), 7| is measured normal to the plane
of the fracture and r, is measured in the fracture plane
(Figure 1). Glass et al. [1998] defined

—b
73 cos(a + ()

ry = (r2) tan G)

where b is the local aperture, a is the fluid/fluid/solid
contact angle, /3 is the convergence/divergence angle of the
fracture surfaces, (r,), is the mean in-plane radius of
curvature, which is estimated as M2, where \ is the
correlation length of the aperture field, and v is a weighted
measure of the local included angle of the interface.
Substituting these expressions for »; and 7, into (3) results
in the following:

b A 2

[11] We simplify our analysis by assuming that conver-
gence/divergence angles are small and the invading fluid is
nearly perfectly wetting or nonwetting (i.e., « = 0 or 7). We
then incorporate (4) into a more general invasion percola-
tion algorithm by including terms for gravitational forces
[e.g., Glass and Yarrington, 2003] and a first-order approx-
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imation to viscous forces [e.g., Xu et al., 1998] for calcu-
lating local invasion pressures:

[ —2(cosa) 2 y
Pipy =T (T + X C0t<5>) - ApngOSH

V
— i, (1 — Mk,
+ g a1 = M) (5)

where subscripts “inv”’ and “def™ represent the invading
and defending fluids, respectively, x is the distance from the
fracture inlet to the invading interface, Ap = p;,, — pacp 0 1s
the angle between the mean fracture plane and the
gravitational vector, V is a mean velocity of the displace-
ment front, p;,, is the viscosity of the invading fluid, M =
Hder! Linv» 18 the mobility ratio, and k and &, are estimates of
the permeability of the fracture and the relative permeability
between the invading interface and the fracture inlet. The
second and third terms on the right-hand side of (5) reflect
the influence of gravity and viscous forces on local
movements of the invading interface; the sign and relative
magnitude of these terms determines whether the displace-
ment is stable or unstable.

[12] To facilitate design of parametric investigations of
the role of entrapped phase structure on flow, transport, and
interphase mass transfer, Glass et al. [2003] derived a
dimensionless equation describing perturbations (P.) of P,
along the advancing interface. We extend that analysis to
include the influence of gravitational and viscous forces on
perturbations in P;,,

P, = F85* + Coot(1) + Gr* (6)
where
b) b’ Op (b) X
P/_*:<_P/ e _ 0 o Ob - D) X
mweear o o b (b) ¢ T Ax
V 11 (b) Ax (bYyAxApg cos 0
= (Ca(1 — Mk,) — B — L Hiny Bo =
G = (Ca( k) — Bo) Ca o 0 5

In the above definitions, (b) and o}, are the mean and
standard deviation of the aperture field and &’ is the local
perturbation from the mean aperture. C is the dimensionless
curvature number, which weighs the mean influence of in-
plane curvature versus aperture-induced curvature on
capillary forces and G is a dimensionless linear gradient
that approximates the influence of viscous and gravitational
forces as quantified by the capillary number (Ca) and Bond
number (Bo), respectively. Thus, it is the relative magni-
tudes of G and C, which each represent a range of possible
values of their defining dimensional parameters, that control
the geometry of an advancing interface. Negative values of
G reduce the impact of perturbations along the interface,
leading to decreased trapping, and positive values of G
enhance perturbations along the interface leading to
instabilities and fingering. Note that 6 is the coefficient of
variation of the aperture field, which controls the rough-
ening of an advancing interface by local aperture variations.
For a given value of G, any values of (b), 0, and A that
yield the same value of C/6, will yield similar entrapped
phase structures. Wetting and nonwetting invasion simula-
tions on multiple aperture field realizations with different
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values of & support this scaling argument [Glass et al.,
2003]. In this paper, we consider a broad range of phase
structures that span a range of C/6 and include a range of
negative values of G.

2.2. Mass Transfer

[13] Viscous flow through a variable aperture fracture can
be approximated by the two-dimensional Reynolds equation

V- (bv) =0 (7)

where b is the local aperture and the average flow velocity is
given by

2
v=_28g, (8)

where v is the kinematic viscosity of the flowing fluid, / is
the local pressure head, and g represents acceleration due to
gravity. In a fracture occupied by two phases, (8) can be
used to calculate the pressure field in the flowing phase,
with the boundary conditions

Vhon=0 (9)

along fluid-fluid interfaces, where m is the unit vector
normal to the interface. Note that in the numerical
implementation of this model, one phase or the other
occupies each grid block. This assumes that the nonwetting
phase completely spans the fracture aperture and neglects
flow through thin wetting phase films between the fracture
surface and the nonwetting phase. Flow through thin films
on fracture surfaces can be significant under certain
conditions in partially saturated, fractured porous rocks
[e.g., Tokunaga and Wan, 1997]. However, in a fracture
filled with two aperture-spanning fluids with isolated
regions of entrapped nonwetting phase, the wetting phase
will be adsorbed predominantly to the surfaces in very thin
films and held in small (relative to the size of entrapped
blobs) depressions in the surface by the added influence of
capillary forces [e.g., Or and Tuller, 2000]. These films will
be at least an order of magnitude thinner than the fracture
apertures (with transmivity about 3 orders of magnitude
smaller than regions occupied solely by the flowing phase).
Thus, the films will be relatively stagnant, and any mass
transfer into the films will quickly cause the concentration
of the dissolving phase in the films to reach equilibrium,
inhibiting further mass transfer.

[14] As discussed by Detwiler et al. [2001], integrating
the three-dimensional Stokes equations across the aperture
precludes specifying momentum transfer across fluid-fluid
interfaces. Because momentum transfer between the fluids
will influence velocities in the immediate vicinity of the
fluid-fluid interfaces, the simplified model may overesti-
mate velocities in a thin (O(b)) boundary layer adjacent to
entrapped regions. The magnitude of the resulting errors in
the depth-averaged velocities will depend on the relative
viscosities of the entrapped and flowing fluids and for most
cases, the influence on mass transfer rates is small (see
Appendix A).

[15] Mass transfer between the entrapped phase and the
flowing phase is controlled by advective and diffusive mass
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transport within the flowing phase. The two-dimensional
advection-diffusion equation provides an estimate of the
steady state distribution of mass within the flowing phase:

V- (bve) = V- (bD,, - Vc) (10a)

where ¢ is the depth-averaged concentration (note that
lowercase ¢ denotes dissolved concentration and uppercase
C denotes curvature number), and D,, is the molecular
diffusion coefficient of the entrapped phase in the flowing
phase. Equation (10a) assumes molecular diffusion provides
the dominant mixing mechanism and does not explicitly
account for dispersion caused by velocity variations either
in the fracture plane or across the aperture. By specifying
adequately fine grid spacing, dispersion caused by in-plane
velocity variability is accounted for implicitly. A sensitivity
analysis demonstrated that the out-of-plane velocity varia-
tions that result in Taylor dispersion do not significantly
influence simulation results [Detwiler et al., 2001] over the
range of Peclet numbers considered in this study, which also
supports neglecting dispersion in (1). The boundary
condition for (10) at fluid-fluid interfaces is that ¢ = c,,
the solubility limit of the entrapped fluid in the flowing
fluid, corresponding to a condition of local equilibrium.
Local interphase mass fluxes between the entrapped phase
and flowing phase are calculated as

j=DuVc-n (10b)

along the entire length of each interface, and the concentra-

tion in the flowing phase at the interface is the equilibrium

concentration of the entrapped phase in the flowing phase.
[16] Equation (10a) can be nondimensionalized to yield

/o 7L I )
\Y (vc)—PeV b'Ve

/ b ! X !

RV SN (10

T T T D,

T T )

so that Pe provides a single parameter for quantifying the
relative magnitudes of advective and diffusive transport
during simulations. Equation (11) uses the depth-averaged
concentration gradients adjacent to the fluid-fluid interface
to drive mass transfer. Thus, this approach ignores
concentration gradients across the fracture aperture. In
Appendix A, we demonstrate that approximating mass
transfer by using depth-averaged velocities and concentra-
tions is well justified.

[17] Mass transfer from individual entrapped regions
results in shrinkage of these regions and associated interface
movement that follows (6); that is, the interface of any
entrapped region recedes first from locations where P, is
smallest. Thus, capillary/gravity/viscous forces along each
interface control interface movement and mass transfer rates
are controlled by mass transport in the flowing fluid.
Fracture-integrated mass transfer fluxes (J) are quantified
by integrating (11) over all interfaces within the fracture at
any time (7)

(11)

VeoS 1 .
J:PdefA*iE:E/JdM

A;

(12a)

where 4, is the total interfacial area and Vris the volume of
the fracture. Mass transfer rates are often expressed in terms
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of the dimensionless Sherwood number (S4), which is
defined as

o
Dy

Sh (12b)
where / is a characteristic length scale for mass transfer. In
studies of porous media, mean grain diameter is often used
as a characteristic length scale because it is closely related to
the mean pore diameter, and residual entrapped nonaqueous
phase is often trapped as isolated blobs in individual pores
[e.g., Mayer and Miller, 1996]. In fractures, (b) is the
analogous characteristic length scale [e.g., Dickson and
Thomson, 2003] and is useful because it is a constant
property of a given fracture. We adopt this convention here,
but we note that, in fractures, entrapped regions of
nonaqueous phase, and the distances between these regions,
span multiple length scales that are dependent on C/6 and G,
challenging our ability to define a unique mass transfer
length scale.

[18] The approach for modeling mass transfer described
by equations (10)—(12) assumes that mass transfer only
occurs orthogonal to interfaces where they span the fracture
aperture. Thus, thin films between the entrapped phase and
the rock surfaces are neglected. As discussed in section 2.2,
flow through these thin films is expected to be negligibly
small, so, for the case of a low-porosity medium (i.c.,
negligible matrix diffusion) as presented here, concentra-
tions of the dissolving entrapped phase in these films will
quickly reach equilibrium. Because the fluid in the films is
relatively stagnant, mass transfer into the films will not
contribute significantly to dissolution. This was confirmed
by excellent agreement between experiment and simulation
[Detwiler et al., 2001]. However, in a porous rock or clay,
where diffusion into the matrix is significant [e.g., O 'Hara
et al., 2000; Parker et al., 1997], it is clear that accounting
for the interfacial area within thin films and the resulting
diffusion into the matrix will be important. Some pore
network models of mass transfer and dissolution, invoke
film flow along the corners of pores to improve agreement
between experimental observations and simulations [Dillard
and Blunt, 2000]. This is necessary because the entrapped
phase typically resides in the pore bodies and without film
flow, mass transfer would be controlled completely by
diffusion through the neighboring pore throats. However,
in fractures, advection immediately adjacent to aperture
spanning interfaces is explicitly represented and leads to
significant mass transfer from these regions [Detwiler et al.,
2001].

[19] Evaluation of the coupled model described in this
section by detailed comparison to quantitative experiments
[Detwiler et al., 2001] demonstrated that this mechanistic
modeling approach accurately predicts both the evolving
spatial distribution of a dissolving entrapped phase, and the
long-term mass transfer rates over the duration of a DNAPL
dissolution experiment. This supports the use of the above
modeling approach for a detailed evaluation of the role of
entrapped phase structure and flow rates on interphase mass
transfer processes.

3. Computational Experiments

[20] We designed a series of systematic computational
experiments to investigate the influence of C/6, G, and Pe,
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(initial Peclet number = V,(b)/D,,) in synthetic correlated
random aperture fields. On the basis of a model proposed by
Brown [1995] to describe two-dimensional fracture aperture
fields, we defined a power spectrum for aperture variations
of the form

(v1)

£(k) x (1 +12|k|2)7 (13)

where k is the wave number vector, H is the Hurst
exponent, which is typically in the range 0.5 < H < 1, and
[ is a cutoff length scale. This functional form of &(k) yields
a smooth transition from the power law behavior (k > 1//) to
the cutoff value (k < 1/]) that results in random fields with
well-behaved semivariograms (i.e., no oscillations as occur
with an abrupt cutoff). The cutoff value reflects the length
scale above which the two fracture surfaces are well
matched. We generated a 1024 x 2048 correlated random
aperture field with H = 0.8, (b) = 0.02 cm, 0, = 0.005 cm,
grid spacing of 0.015 cm, and a correlation length, A =
0.075 cm (defined as the separation distance at which the
semivariogram reached a value of o(1—1/e)). The values of
these parameters all fall within the range reported by Brown
[1995] for apertures resulting from a range of different
fracture surfaces. We simulated dissolution in this baseline
aperture field using a broad range of parameters (C/6 = 0,
0.5, 1, 2, and 4; Pe, = 0.4, 2, 10, 50, and 250; G = 0.0,
—0.25 and —1.0) to quantify the relative influence of each
of the relevant parameters.

[21] We then chose a subset of parameters (C/6 = 0, 0.5,
1, 2; Pe, = 0.4, 10, 250, G = 0) to investigate the influence
of variations between aperture field realizations on simu-
lated mass transfer rates in 5 additional aperture fields with
identical statistics ((b), o, and \) to the baseline fracture.
These additional simulations provide a qualitative check of
the relative (systematic) influence of the varied parameters
(C/6, Pe, and G) versus interrealization variability. Specif-
ically, if we are to contend that any attribute related to mass
transfer exhibits a systematic dependence on C/6, and/or Pe,
and/or G, the systematic variations of that attribute should
be significantly larger than interrealization variability of the
same.

[22] The resulting 135 simulations were run using the
following procedure: The fractures were initially fully
saturated with a nonwetting, nonaqueous phase and subse-
quently invaded by a wetting, aqueous phase along one of
the short edges. The nonwetting phase was free to flow from
the remaining three edges of the fracture. This configuration
represents likely scenarios in different physical systems of
interest such as pooling of DNAPL above relatively low
permeability regions or pooling of CO, beneath imperme-
able cap rocks. In both of these scenarios, once the non-
wetting fluid encounters a low-permeability barrier, it will
begin to displace the resident fluid from fractures through a
gravitationally stable displacement process leaving only
small amounts of residual wetting phase in the smallest
aperture regions. Subsequent redistribution of the phases
may result when the pressure in the nonwetting fluid
exceeds the entry pressure of the barrier or the nonwetting
phase breaks through the low- permeability barrier, resulting
in imbibition of the wetting phase similar to that represented
by our invasion simulations. We acknowledge that there are
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other possible phase displacement scenarios that will lead to
different configurations of the entrapped phase and the
possibility of different mass transfer characteristics. The
influence of the initial displacement processes on phase
structure and subsequent mass transfer rates is an area for
future study. We assume that during the relatively rapid
(relative to interphase mass transfer rates) quasi-static dis-
placement process, interphase mass transfer was negligible.
We then initiated the mass transfer simulations by specify-
ing a constant pressure gradient across the length of the
fracture, no-flow boundaries along the sides (long edges)
and an influent concentration of dissolved nonwetting
phase, ¢, = o = 0 and ran each simulation until S decreased
to zero.

4. Results

[23] The mechanistic mass transfer and dissolution model
used for this study provides the unique opportunity to
directly calculate spatially variable local mass transfer rates
across all NAPL-water interfaces, and their influence on
evolving entrapped phase structure. This ability to quantify
the influence of local processes on the fracture-scale behav-
ior allows us to evaluate the utility of simplified constitutive
models for predicting nonaqueous phase dissolution from
variable aperture fractures over a wider range of parameter
space than is feasible experimentally. In this section, we
present results from the parametric dissolution simulations
and propose constitutive relationships that effectively relate
flow and mass transfer rates to entrapped phase saturation
and flow rate.

4.1.

4.1.1. Entrapped Phase Distribution and Saturation
[24] Figure 2 shows the entrapped nonwetting phase
distributions after completion of the wetting phase invasion,
superimposed on the fracture aperture field for C/6 =0, 0.54
and 1 and G = 0 and —1. Note that the case of C/6 = 0
represents the limit of zero in-plane curvature such that the
order of interface displacements is determined completely
by the magnitudes of local apertures (as in standard invasion
percolation) and the case of G = 0 corresponds to displace-
ments driven solely by capillary forces. As C/6 increases,
the influence of in-plane curvature on the invasion process
increases, resulting in more compact entrapped regions with
smoother interfaces. Although not immediately evident
from Figure 2, the size of individual entrapped regions is
larger for smaller C/6. At C/6 = 0, the entrapped regions
have highly contorted (and less compact) shapes, with
numerous thin “necks” providing continuity of the entrap-
ped areas. For C/6 = 0, there is typically one large entrapped
region that spans almost the entire width of the fracture.
Decreasing the value of G reduces trapping along the
advancing interface during invasion, leading to smaller,
more uniformly sized entrapped regions. Wetting fluid
invasion into the fracture results in a wide range of initial
nonaqueous phase saturations (S,,) that show a strong
dependence on both C/6 and G. Here we define the
nonaqueous phase saturation (S,) as the areal saturation,
or the fraction of the fracture area occupied by the non-
aqueous phase. This is directly related to S, the volumetric
saturation by S, = S (b)/(b,), where (b,) is the mean
aperture for the portion of the fracture occupied by the

Initial Conditions
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f)

Figure 2. Examples of initial entrapped phase structure (red) superimposed on the baseline fracture
aperture field. The gray scale represents apertures increasing from 0 to 0.04 cm (black to white).
Parameter values are (a) C/6 =0, G=0, S,,, = 0.62; (b) C/6 =0.54, G=0, S,,,=0.52; (¢c) C/6=1.1,G=0,
S,,=0.35;(d) C/6=0,G=-1.0, S,,=0.51; (e) C/6=0.54, G=—-1.0, S,,=0.32; and () C/6=1.1, G =
—1.0, S,,, = 0.15. The C/6 = 0 cases represent standard invasion percolation simulations, and increasing
values of C/6 represent the increasing influence of in-plane curvature. Flow of the invading (flowing)

phase was from top to bottom.

nonaqueous phase. Figure 3 shows S, plotted against C/6
for each of the values of G. The initial nonaqueous phase
saturation (S,,) decreases with C/6 for all values of G,
owing to the role of in-plane curvature in smoothing an
advancing interface [Glass et al., 2003]. Smaller values of
G result in a reduction in the size of entrapped regions and a
corresponding decrease in S,, for all values of C/6. Note
that experimental measurements of residual DNAPL satu-
ration (21-27%) in two horizontal (G = 0) natural limestone

fractures [Longino and Kueper, 1999] fall between the
calculated values of S,, for C/6 = 1.1 and 2.2. Though
Longino and Kueper [1999] did not report measurements of
aperture field statistics, these values of C/§ are representa-
tive of values obtained from measurements of natural
fractures in different rock types [Brown, 1995].
4.1.2. Interfacial Area

[25] The interfacial area between the entrapped and
flowing phases is expected to influence mass transfer rates
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Figure 3. Initial values of areal saturation (S,,,) at end of
invasion stage of simulations for G = 0.0 (diamonds), —0.25
(triangles) and —1.0 (squares). In addition to reducing the
sizes of the entrapped structures, increasing the magnitude
of G leads to a reduction in S,,.

from the entrapped nonaqueous phase. We define an intrin-
sic interfacial area, a; = 4;/V; Figure 4 shows the initial
intrinsic interfacial area a;, plotted against S,,, for the three
values of G and demonstrates power law scaling of a;, with
S, and a secondary dependence on G. This behavior can be
approximated well by a relationship of the form

@y = a’Srl’:éXP(—ﬂ'\Gl) (14)
where o’ and /3 are fitted parameters. Note that for the case
of G = 0, a,, is proportional to S2,. For the range of
parameter space presented here, o/ = 60 cm™' and ' = 2.4
fit the data well, as demonstrated by the fitted curves in
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Figure 4. We note that the values of o’ and 3 are specific to
the invasion process used for our study, but it is likely that
a;, will exhibit similar power law scaling in different
configurations, though this remains to be investigated. For
the G = 0.0 results, the data points represent the average of
the 6 realizations, and the error bars reflect one standard
deviation. These results demonstrate that the intrinsic
interfacial area is insensitive to interrealization variability,
and that there is a systematic dependence of a;, on the
parameters C/0 and G controlling the entrapped phase
structure.

4.2. Entrapped Phase Dissolution

[26] Gradients of the dissolved nonaqueous phase con-
centrations in the vicinity of the water/nonaqueous phase
interfaces drive local mass transfer. The relative rates of
advection and diffusion of dissolved nonaqueous phase, the
morphology and spatial distribution of the entrapped
regions, and the interface area between the fluids in turn
control these concentration gradients. We expect that for a
given hydraulic gradient, mass transfer will be more effi-
cient for initial saturation fields where the individual
entrapped regions are smaller and more uniformly distrib-
uted (i.e., large C/6 or G < 0) than in fields dominated by
large, tortuous entrapped regions (i.e., small C/6 and G =~
0). Large tortuous entrapped regions significantly reduce
relative permeability (and thus flow through the fracture)
and limit the fraction of interfaces between the flowing and
entrapped phase that are adjacent to active flow paths. Thus,
it is reasonable to expect that the wide range of initial
entrapped phase distributions represented in Figure 2 will
yield significant differences in dissolution behavior over the
range of C/6 and G.

4.2.1. Evolution of Saturation Profiles

[27] Tt is instructive to quantify the entrapped phase

saturation and dissolved nonaqueous phase concentrations

100
. 10F
'E
N/
m'e
‘I -
0.1
0.01

Figure 4. Initial specific interfacial area (a;, = A/Vy) plotted against initial entrapped phase saturation
(Syo)- Error bars for G = 0 case represent 1 standard deviation of the values obtained for five additional
realizations. The lines represent the best fit of the power law relationship a;, = o/ Shrexp(= 6D with

parameter values of &’ = 60 cm™' and 8 = 2.4.
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Figure 5. Saturation (lines) and normalized concentration (points) profiles for simulations (flow is
from left to right) with initial conditions shown in Figure 2. The three profiles represent the conditions
in the fracture at S, = S,,,,, 1/3S,,, and 2/3S,,,. For each plot, the largest values of S, and ¢ coincide with
the initial condition and both values decrease monotonically with time. The numbers adjacent to the S, =
1/3S,,, and 2/3S,,, curves reflect the cumulative number of pore volumes flowed through the fracture at

the time the profiles were recorded.

by integrating across the width of the fracture (S,(x) and
c(x)) at different times to understand the progression of
dissolution and mass removal with time. S,,(x) is calculated
using a 128 Ax x L, averaging window on the binarized

saturation field, and c(x)/c., is the flux-weighted concen-
tration at each cross section along the flow direction
normalized by the equilibrium concentration of the dis-
solved nonaqueous phase. Figure 5 shows S,,(x) (solid lines)
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Figure 6. Composite images of entrapped phase evolution during dissolution simulations with flow
from top to bottom. The values of C/6 and G correspond to the initial entrapped phase distributions
shown in Figure 2. The color scale (blue-green-yellow-red) represents the order in which cells originally
filled with the entrapped phase were replaced by water owing to mass transfer (blue first; red last), and
black represents locations that were initially water-saturated.

and c(x) (symbols) plotted against the distance into the
fracture, x, for the initial phase distributions represented in
Figure 2. The different curves for each plot represent pro-
files calculated from the simulations, at S, = S,,,, 2/3 S,.»
and 1/3 S,,,. The profiles are shown for Peq = 0.4 and 250.
These plots demonstrate the wide range of behaviors
exhibited by the simulations. In the discussions in this
section, we focus on saturation and concentration profiles
and the spatial patterns of dissolution, using S, as a
surrogate variable to describe time evolution. In reality,

the time scales over which the changes in S, occur vary
widely between the different cases, and we will address
these differences in section 4.2.3.

[28] At high Pe,, dissolution occurs relatively uniformly
over the length of the fracture, particularly for low C/6 and
G = 0. This type of behavior occurs because at high Pe,
(250), water flows through the fracture rapidly, before
picking up enough dissolved nonaqueous phase to reach
the equilibrium concentration. As discussed below, this type
of behavior is also in part due to the formation of dissolu-
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C/6=0.54

Figure 7. Composite image of entrapped phase evolution
for the initial conditions shown in Figure 1b, with 100 grid
block strips removed from each of the long edges. The
resulting dissolution pattern is similar to that shown in
Figure 5 (entire field) except that the early channel forms
through the middle of the domain instead of along the
edges. This suggests that the initial low saturations along
the fracture edges resulting from the invasion simulations
do not introduce any artifacts in the behavior of mass
transfer rates.

tion fingers. Focused flow through dissolution fingers
sustains low concentrations of the dissolved nonaqueous
phase farther into the fracture. As a result, the width-
averaged dissolution rate is relatively uniform along the
fracture length and the width-averaged saturation S,(x)
decreases relatively uniformly along the entire fracture
length. At lower values of Pe,(0.4), the formation of a
distinct dissolution front is evident as S,,(x) decreases to zero
over a length that extends from the entrance to the front
location (which advances into the fracture with time). Note
that for the C/6 = 0 cases at Pey = 0.4, the formation of a
dissolution front is also accompanied by dissolution along
the length of the fracture downstream of the front (The S,,(x)
profiles reveal a progressive decrease from S§,,(x) values
downstream of the front location for C/6 = 0, and to a lesser
extent for C/6 = 0.54 and 1.1 with G = 0). To clarify the
cause of the different behaviors observed in Figure 5,
Figure 6 shows composite images of the dissolution process
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for the initial conditions shown in Figure 2. These images
show the order in which locations initially filled with
nonaqueous phase are replaced by water as interphase mass
transfer reduces the volume of each of the entrapped
regions. The simulations depicted in Figure 6 were each
run with Pe, = 10, which falls between the two different
cases shown in Figure 5.

[20] For the C/6 = 0, G = 0 simulation (Figure 6a), the
initial invading phase structure lacks a multitude of
connected paths traversing the length of the fracture, due
to the contorted shapes of the large entrapped areas that
span a significant fraction of the fracture width. Connected
paths are available along the lateral edges of the domain and
dissolution fingers form quickly along these edges. Mass
transfer occurs predominantly by transverse diffusion from
the outer edges of the entrapped regions (inner edges of the
fingers). As the entrapped phase dissolves gradually from
these regions, the fingers widen laterally. At the same time,
there is a readjustment of the shapes of entrapped regions by
capillary forces: although mass transfer occurs predomi-
nantly along the outer edges, the way that a single entrapped
region responds to mass removal incorporates the influence
of capillary forces. Interface retraction does not always
occur from the regions of highest mass transfer. Thus, there
is a gradual redistribution and breakup of the nonaqueous
phase within the central region, leading to increased flow
through this region. This is observed as the isolated regions
of cool colors in the interior of the low-flow region in
Figure 6a, which correspond to nonaqueous phase that
vacated these locations at early times. Overall, the initial
formation of fingers along the edges and diffusion-con-
trolled mass transfer from the periphery of the central region
are the dominant controls in this case, leading to relatively
uniform width-integrated dissolution along the fracture length,
observed in the saturation profiles (Figure 5, C/6 =0, G =0,
Pe, = 250). At lower Pe, ~ 0.4, the relative influence of
diffusion is stronger. Transverse diffusion from the inner
edges of the entrapped regions bordering the fingers is still
the dominant mechanism for mass transfer in the down-
stream regions of the fracture. Also, near the fracture
entrance, because of relatively slow advection, diffusion
controls mass transfer along the upstream edge of the
entrapped region. Thus, the flowing phase reaches equilib-
rium shortly after encountering regions of entrapped phase
leading to the formation of a dissolution front. Thus, at
lower Pe,, in the C/6 = 0, G = 0 case, a mixed dissolu-
tion front/uniform dissolution behavior results (Figure 5,
C/6=0,G=0, Pe,=0.4).

[30] For C/6 =0.54 and G = 0 (Figure 6b), the entrapped
regions are more compact and do not span a large fraction of
the fracture width as in the C/6 = 0, G = 0 case. Thus, the
mobile phase penetrates and flows through the central
portion of the fracture width even at early time, leading to
the formation of dissolution fingers along the edges and the
center of the fracture. However, the overall behavior of the
width-averaged saturation profiles is not significantly dif-
ferent from that observed in the C/6 = 0, G = 0 cases. The
dominant mechanism of mass transfer involves transverse
diffusion at the edges of the dissolution fingers, especially
in the downstream portions of the fracture. Thus, at high Pe,
(Figure 5, C/6 = 0.54, G = 0, Pe, = 250), there is relatively
uniform width-integrated dissolution along the length of the
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Figure 8. Specific interfacial area (a;) plotted against entrapped phase saturation (S,) for G = 0
(diamonds), —0.25 (triangles), and —1.0 (squares) and C/6 = 0 (red), 0.5 (green), and 1 (blue). The
nearly linear relationship between a; and S, supports the use of a simple constitutive relationship

(equation (15)).

fracture and at low Pe,, (Figure 5, C/6 = 0.54, G =0, Pe, =
0.4), a mixed dissolution front/uniform dissolution behavior
results. Note that the channels along the lateral edges of the
fracture for the C/6 = 0 and 0.54, G = 0 simulations are a
result of the initial configuration of the nonaqueous phase,
which includes narrow strips of low saturation/high trans-
missivity along the edges of the fracture. This is a result of
the open boundaries used during the invasion simulations,
which causes the wetting invading phase to completely
displace the nonwetting defending phase along the bound-
aries. Removing the initial channels along the edges by
clipping the domain (e.g., for C/6 = 0.54 and G = 0 case),
leads to the formation of a single dominant channel through
the middle of the fracture separating two low-flow regions
along either side of the domain (Figure 7). These two
separate regions are quite similar to the single low-flow
region shown in the corresponding full field simulation
(Figure 6b), in the sense that transverse diffusion from the
edges of the dissolution fingers is the dominant mass
transfer mechanism in these cases, regardless of the bound-
ary effects involved in the invasion simulations.

[31] The main difference between the C/6 = 1.1, G =0
and the other G = 0 cases is that the entrapped regions are
much smaller and more compact, and there are larger open
areas between them for the invading fluid to flow through.
As a result, a larger number of dissolution fingers/channels
are formed (Figure 6¢). There is more mass transfer all
along the periphery of individual entrapped regions, be-
cause they are in contact with more than one dissolution
finger/channel. The overall behavior of the S,(x) profiles
for this case is still strongly controlled by Pe,. The
relatively lower diffusive fluxes in the high Pe, case leads
to relatively uniform dissolution along the fracture length
throughout the duration of the simulation, while a mixed
dissolution front/uniform dissolution behavior is seen at
low Pe,.

[32] In the G = —1.0 cases, the individual entrapped
regions are substantially smaller than in the corresponding
G = 0 cases (Figure 2). However, the spatial distribution of
the entrapped regions is strongly affected by C/6. For C/6 =
0 (Figure 2d), the entrapped regions are closely spaced,
reducing the relative permeability to the invading phase
significantly, while in the C/6 = 0.54 and 1.1 cases, the
spacing progressively increases. There is still a tendency for
dissolution fingers to form, owing to spatial variations in
entrapped phase saturation, rather than occlusion by large
individual entrapped regions. Qualitatively, the behavior in
the G = —1.0 cases (Figures 6d—6f) follow similar trends to
the G = 0.0 cases (Figures 6a—6c), except that the small
sizes of the entrapped regions lead to the formation of more
dissolution fingers and these fingers are much wider than in
the G = 0.0 cases. The S,,(x) profiles shown in Figure 5 also
suggest a qualitative similarity between the G = 0.0 and G =
—1.0 cases at low Pe, = 0.4, in that a dissolution front forms
in both sets of simulations. At high Pe, = 250, there are
greater differences between the behavior for the G = —1.0
and G = 0.0 cases. At C/6 = 0 and 0.54, a mixed dissolution
front/uniform dissolution behavior is observed in the G =
—1.0 cases, unlike the uniform dissolution in the G = 0.0
cases. This is largely because in the G = —1.0 case, the
small entrapped regions are more readily dissolved away
and there are more fingers.

4.2.2. Intrinsic Interfacial Area and Relative
Permeability

[33] The intrinsic interfacial area («;) plays a critical role
in fracture-scale mass transfer rates. Here we quantify
the evolution of a; as the nonaqueous phase dissolves.
Figure 8 shows «; plotted against S, for C/6 = 0.5, 1, 2;
G =0, —0.25, —1.0; and Pe, = 10. For all simulations, as
mass transfer causes S, to decrease from S,,,, a; decreases
approximately linearly from the values of @;, modeled by
(14) to zero at S, = 0. This behavior is consistent across
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Figure 9. Relative permeability (k) plotted against entrapped phase saturation (S,) for G = 0
(diamonds), —0.25 (triangles), and —1.0 (squares) and C/6 = 0 (red), 0.54 (green), and 1.1 (blue). The
black line represents k., calculated using the parameters from Detwiler et al. [2005], which were
determined from high-resolution mechanistic simulations in similar aperture fields.

the range of Pe, (not shown) and is consistent with similar
observations in measurements of interfacial area in porous
media [e.g., Johns and Gladden, 1999; Schnaar and
Brusseau, 2005; Zhang et al., 2002]. This suggests that
the evolution of a; can be represented well using a relation-
ship of the form

(15)

such that the dependence of a; on C/6 and G is introduced
by a;,, which can be estimated using equation (14).

[34] The relative permeability (k) of the fracture changes
as the entrapped nonaqueous phase dissolves. Relative
permeability plotted against S, for all of the simulations
(Figure 9) demonstrates that &, shows a similar dependence
on S, despite the fact that the entrapped phase morphology
varies widely between simulations and over the duration of
individual simulations. In a previous study [Detwiler et al.,
2005], we proposed a semiempirical relationship for the
satiated relative permeability (i.e., corresponding to the
initial entrapped phase distribution) of variable aperture
fractures over the same range of C/6 with the form

e <<bz:>>; {(1 5)5) / 1+ t«?;))y 16)

where, (b,,) is the mean aperture occupied by the entrapped
phase, S¥ is the percolation threshold, S,; is a constant that
determines the slope of the k,, versus S, curve as S, — 0,
and ¢’ is the conductivity exponent for two-dimensional
percolation systems (~1.3). Though £, is a measure of %,
when the entrapped regions are distributed more or less
uniformly over the fracture area (a condition that is not
satisfied as dissolution progresses from the initial entrapped
phase), we expect k,, to provide reasonable estimates of k.

When dissolution leads to nonuniform spatial distributions
of entrapped regions, the corresponding fracture-scale
values of &, will be overestimated by (16). Despite this
limitation, Figure 9 demonstrates that the k., model provides
a reasonable upper bound for £, from all of the simulations.
Furthermore, it is reasonable to expect that applying (16) as
an estimate of local relative permeabilities within sub-
regions of the fracture would improve agreement between
model and simulations, because the influence of channels
parallel to the flow direction would be better represented in
the modeled results (see section 5).
4.2.3. Interphase Mass Transfer Rates

[35] As discussed in the introduction, mass transfer rate
coefficients are often derived from experimental results by
applying the solution to the one-dimensional advection-
reaction equation (1) to either measured outflow concen-
trations, or, if available, concentration profiles within the
experiment. Applying these rate coefficients in different
fractures or at different scales requires that the distribution
of entrapped phase is similar. Despite the complex initial
entrapped phase distributions, for all cases the entrapped
phase is distributed relatively uniformly throughout the
fracture. However, as dissolution progresses dissolution
fronts and/or dissolution fingers begin to form undermining
our ability to apply mass transfer rate coefficients at the
fracture scale. Figure 10 shows examples of fitting (2), with
C(x) in place of C and x in place of L, to concentration
profilesat =0 for C/6=0,G=0and C/6=1.1,G=—1 at
Pe, = 0.4, 10 and 250. The fitted curves demonstrate that
the one-dimensional advection-reaction model fits the initial
width-averaged concentration profiles quite well over a
wide range of Pe,, suggesting that this approach provides
reasonable estimates of k& (and S%) when the entrapped phase
is relatively uniformly distributed.

[36] Estimates of k were obtained by fitting (2) to
concentration profiles from each of the simulations at ¢ =
0. By plotting Sh = k (b)/D,, versus Pe, for different initial
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Figure 10.
with results from fitting a one-dimensional advection-reaction equation (lines) to the profiles for Pe = 0.4,
10, and 250.

entrapped phase distributions (not shown) we inferred a
simple relationship for Sh:

Sh = n\Pe? (17)

where n; and n, are fitted parameters. Fitting (17) to the
complete data set provides estimates of 77 and 7, of 0.7 and
0.23. Figure 11 shows Sh/Ped** plotted against S,,,. Despite
the wide variation in the morphologies of the entrapped
phase structures, S# was found to be approximately constant
for much of the range of S,,,, particularly at larger Pe,. For
all values of Pe,, Sh was found to decrecase near the
percolation threshold and for smaller values of Pe,, Sh
decreased as S,,, approached zero. However, the variations
in Sh with S,, were similar in magnitude to the
interrealization variability exhibited for the G = 0 simula-
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Initial concentration profiles (diamonds) for (a) G =0, C/6 =0 and (b) G = —1, C/6 = 1.1

tions, suggesting the absence of a systematic dependence on
S,0. This supports the use of (17) to approximate Sh. The
influence of S,, on mass transfer rates is reflected
predominantly through the relationship for a;, given by
(15). Extending the same idea further, we expect that Sh
from (17) could be used together with «@; given by (15) to
describe mass transfer as the entrapped phase geometry
evolves during dissolution. In section 5, we demonstrate the
accuracy of this representation.

5. Applying Constitutive Relationships to a
Continuum Model

[37] Results in section 4 suggest that over a range of
parameter space, fracture-scale interphase mass transfer may
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Figure 11.

Sherwood number (S%) normalized by Pe,

plotted against S,,, for all simulations. The

results include the base case simulations (C/6 =0, 0.54, 1.1,2.2; G=0.0, —0.5, —1.0; Pe, = 0.4, 10, 250)
and simulations in the corresponding narrow fields (i.e., 100 grid block strip removed from each long
edge of the fracture) and multiple realizations for the C/6 = 0 simulations.
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Figure 12. The relative permeability, &, from continuum
model simulations using the constitutive relationships in (15),
(16), and (17) plotted against &, measured during the mech-
anistic simulations for G = 0 (diamonds), —0.25 (triangles),
—1.0 (squares); C/6 = 0 (red), 0.54 (green), 1.1(blue),
2.2 (magenta); and Pe, = 0.4 (small), 10 (medium), 250 (large).
The dashed lines represent a + 10% discrepancy between
estimates of %, calculated using the continuum model and
mechanistic model.

be represented by a set of relatively simple constitutive
relationships for a;, k,, and Sh. The relationships for %, and
Sh describe steady state mass transfer for the initial (satiated)
entrapped phase distribution quite well. However, in many
of the simulations, transient dissolution led to nonuniform
evolution of the entrapped phase (Figure 6) suggesting that
these fracture-scale relationships will be less effective at
quantifying evolving mass transfer rates at later times. Thus,
rather than applying these constitutive relationships to the
entire fracture, we coarsen the grid used in the mechanistic
simulations and apply the constitutive relationships locally.
This approach provides a continuum model of mass transfer
and dissolution that does not require explicit discretization
of each entrapped region, but instead relies upon locally
averaged estimates of (b) and S,,. Using a continuum repre-
sentation of the variable aperture fracture, where the grid
dimensions are large enough that S, is well behaved (i.e.,
maximum S,~S,,,) and small enough that intermediate-scale
features such as dissolution fingers and fronts can be repre-
sented, may provide an effective approach for represent-
ing dissolution from variable aperture fractures and fracture
networks at a much wider range of scales than is feasible
with the detailed mechanistic model.

[38] Numerical implementation of a local mass transfer
model using the relationships for a;, k. and Sh in (15), (16)
and (17) provides estimates of mass transfer from the
fracture over the range of parameter space. To implement
this model, we coarsened the initial aperture field and
saturation fields such that each grid block contained an
average over a 128 x 128 region (1.92 x 1.92 cm) of the
initial fine grid. The coarse grid hydraulic apertures () are
calculated as the geometric mean of the fine grid values and
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the saturations are the average of the binary saturation field
at the end of the invasion simulation. The resultis an 8 x 16
domain that represents the original 1024 x 2048 fracture.
Local transmissivities incorporate values of &, calculated
from the local value of S, and equation (16), and allow for
the solution of the pressure field and local flow rates using a
two-dimensional flow solver

V- (TVh) =0 (18)
where
_, b
T=ko (19)

Mass transfer and transport of the dissolved nonaqueous
phase are calculated using a two-dimensional advection-
dispersion-reaction equation of the form

V- (Vbe) = V- (Db - Vé) = ShDyai(ceg =€) (20)
where the mean velocity vector, V, is given by
V=TVh {;} (21)
- bAx(1 —S,)

where b is the effective transport aperture (the arithmetic
mean of the initial aperture field), ¢ is the averaged
concentration, and D is a dispersion tensor. We approximate
D using a relationship presented by Detwiler et al. [2001]
for dispersion in saturated fractures:

— =1+ aygeoPe + (yTaylm,PeZ (22)

Dy,

where 400 and iz, are the dispersion coefficients
associated with in-plane and out-of-plane velocity variations
and have values of 2.0 and 1/210, respectively, for the
fractures used in our study. Though (22) likely under-
estimates dispersion in partially saturated fractures [e.g.,
Detwiler et al., 2002], we expect dissolution simulations to
be relatively insensitive to estimates of the dispersion
tensor, as discussed by Detwiler et al. [2001]. Interphase
mass transfer leads to reductions in nonaqueous phase
saturations that are calculated using

p E@S,,

nb 5, = ShD,,a; (ceq — E)

(23)

To investigate the ability of the continuum model to predict
interphase mass transfer under a range of conditions, we
applied the model to the evolving saturation fields
calculated during the mechanistic simulations. This resulted
in steady state estimates of k. and J at each time step that
can be directly compared to the corresponding values
calculated during the mechanistic simulations. Figure 12
shows £k, calculated using the coarse grid flow model (19)
and &, calculated during each time step of the mechanistic
simulations. The results show that applying (16) locally
yields good agreement between the two models. The
continuum model systematically overestimates k. by less
than 10% for most of the cases, which is considerably better
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Figure 13. Sh predicted by the continuum model simulations using the constitutive relationships in
(15), (16), and (17) plotted against Sh measured during the mechanistic simulations for G = 0 (diamonds),
—0.25 (triangles), —1.0 (squares); C/6 = 0 (red), 0.54 (green), 1.1(blue), 2.2 (magenta); and Pe, =
0.4 (small), 10 (medium), 250 (large). The data points represent mass transfer rates over the entire duration
(full range of S, of each simulation. The dashed lines represent discrepancies of factors of 1/5 and 5
between the continuum model calculations and the mechanistic model calculations.

than the results shown in Figure 9 where (16) was applied at
the scale of the entire fracture. At large Pe, and C/6 = 0,
discrepancies are slightly larger, because (16) predicts small
but significant values of %, in the central region of the
fracture; however, owing to very limited connection of the
flowing phase in this region, the mechanistic model predicts
very little flow through this region.

[39] We use (20) with local values of Sh estimated using
(17) to predict fracture-scale mass transfer rates observed
in the mechanistic simulations over the full range of S,.
Figure 13 compares evolving values of fracture-scale Sh for
the two different models. As expected from the variability
observed in Figure 11, there are more significant discrep-
ancies between estimates of S than we observed for k,.
However, almost all of the coarse grid estimates fall within
half an order of magnitude (dashed lines) of the values
predicted by the mechanistic model. These discrepancies are
predominantly due to the relatively wide variability in the
values of S# measured from the mechanistic simulations.
Though the constitutive model does not represent the
interrealization variability in Sh, (Figure 13), the absence
of significant systematic trends away from the mechanistic
model results over the full range of S, is encouraging.

[40] Equations (18)—(20) also allow transient simulations
of dissolution by using the initial entrapped phase distribu-
tion for calculating coarse grid values of S,,, and evolving S,
according to (23). Figure 14 compares the width-integrated
saturation profiles presented in Figure 5 to profiles calcu-
lated using the transient numerical implementation of equa-
tions (18)—(23). Each of the profiles are shown at S, =
Syo» 2/38,,,, and 1/3S,,, and thus reflect the spatial variability
of dissolution within the fracture, but not the time variation

of the dissolution rates. The continuum model cannot be
expected to predict the small-scale variability observed in
the mechanistic simulations, but the large-scale trends are
reproduced quite well (Figure 14). The poorest agreement
occurs for the G = 0, C/6 = 0.54, Pe, = 0.4 simulation,
where the large entrapped regions observed in the range 5 <
x < 12 cm dissolve considerably more slowly during the
continuum simulations. This is because there are several
coarse grid blocks in this region where §,,, = 1.0 and thus
the predicted mass transfer rate at early times is zero. By
contrast, the mechanistic model allows capillarity to break
up these large entrapped regions at relatively early times
(see blue regions in Figure 6b), leading to enhanced mass
transfer and faster dissolution rates.

[41] To compare fracture-scale dissolution rates between
the continuum and mechanistic models, we use the total
number of pore volumes required for complete dissolution
as a metric. This is a stringent metric because the errors in
the mass transfer rate (Figure 13) tend to have the same sign
(i.e., errors accumulate) throughout the duration of a sim-
ulation. Figure 15 shows the total number of pore volumes
required for complete dissolution of the entrapped phase
using the mechanistic model and the continuum model with
the constitutive relationships developed in section 4. The
total number of pore volumes required for dissolution across
these initial phase structures and flow conditions covers a
range of 2.5 orders of magnitude. Over this entire range, the
continuum model predicts the total pore volumes required
for dissolution to within a factor of two (dashed lines) for
most of the parameter values. The exceptions are at G = 0,
C/6 = 0.54 and 2.2, where the continuum model over-
estimates the pore volumes required for dissolution and at
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Figure 14. Saturation profiles for the mechanistic simulations on a 1024 x 2048 grid (lines) and the
continuum model simulations on a coarsened 8 x 16 grid using the constitutive relationships developed
in section 4 (lines with squares). The profiles correspond to the results shown in Figure 5, and the three
profiles represent the conditions in the fracture at S, = §,,,, 1/3S,,,, and 2/3S,,,,.

C/6 =0, G=—0.25 and —1.0, where the continuum model
underestimates the pore volumes required for dissolution.
For the G = 0 cases, the discrepancy reflects the influence of
the relatively slow dissolution of the large entrapped region
in the range 5 < x < 12 cm during the continuum model
simulations as observed in Figure 14. For the G = —0.25,
—1.0 and C/6 = 0 cases, the relatively uniform distribution
of smaller entrapped regions results in a near uniform S,
field for the continuum simulations. Thus, continuum model
simulations predict a relatively uniform dissolution front

propagating through the fracture, whereas the mechanistic
simulations are influenced by small-scale heterogeneity in
S,, that result in a nonuniform (and slower) dissolution
process (Figure 6d). However, despite small variations in
predicted rates and spatial evolution of the entrapped phase,
the ability of the continuum model to predict the transient
dissolution patterns over a broad range of parameter space
demonstrates that a relatively simple set of constitutive
relationships based solely upon S, are adequate for pre-
dicting the evolution of entrapped phase saturations in a
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Figure 15. Pore volumes required for complete dissolu-
tion estimated by the continuum model simulations plotted
against the same results for the mechanistic simulations for
G = 0 (diamonds), —0.25 (triangles), —1.0 (squares); C/6 =
0 (red), 0.54 (green), 1.1(blue), 2.2 (magenta); and Pe, = 0.4
(small), 10 (medium), 250 (large). The dashed lines each
represent a factor of 2 deviation from the mechanistic
simulations.

variable aperture fracture. The most surprising feature of
these results is that a zeroth-order measure of entrapped
phase distribution (S,,) is sufficient for predicting mass
transfer from the complex and varied entrapped phase
structures observed in Figure 2.

6. Concluding Remarks

[42] We have demonstrated the influence of entrapped
phase structure on interphase mass transfer and dissolution
in variable aperture fractures over a range of the dimen-
sionless parameters C/8, G, and Pe,, which reflects a wide
range of aperture field geometries, invasion processes and
flow rates, respectively. A series of high-resolution mech-
anistic simulations based on the rigorously tested approach
of Detwiler et al. [2001] demonstrated the detailed inter-
actions between fluid flow, dissolved phase transport, cap-
illary forces and evolution of entrapped phase geometry.
These simulations provided a detailed picture of spatial and
temporal variations in mass transfer rates in fractures with
initial entrapped phase saturations that ranged from zero to
near the percolation threshold, and included widely varying
entrapped phase geometries. The high-resolution mechanis-
tic simulations also provided a “ground truth” against
which to evaluate simplified constitutive models of the
coupled processes that can be incorporated in continuum
models. A significant focus of this paper was on the
development of such constitutive relationships based on
the results of the high-resolution simulations. Somewhat
surprisingly, the results demonstrated that across a wide
range of initial entrapped phase geometries and flow rates, a
zeroth-order measure of entrapped phase structure, the
entrapped phase saturation (S,), serves as a reasonably
sufficient controlling parameter in constitutive relationships
for quantifying local estimates of relative permeability and
intrinsic interfacial area. In addition, when combined with a
simple power law relationship for the Sherwood number as
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a function of Peclet number, these constitutive relationships
provide estimates of local interphase mass transfer rates.
Coarse grid continuum simulations using these simplified
constitutive relationships compared reasonably well with
the high-resolution mechanistic simulations, both in terms
of the time to total dissolution and the spatial evolution of
the entrapped phase saturation during dissolution. The
number of pore volumes required for complete dissolution
was predicted by the coarse grid simulations to within a
factor of two for almost all cases. The coarse grid simu-
lations also consistently predicted differences in overall
behavior of the width-integrated dissolution process, in
terms of when a dissolution front forms and when there is
a relatively uniform dissolution rate across the fracture
length.

[43] Discrepancies between the high-resolution simula-
tions and coarse grid simulations based upon the proposed
constitutive relationships were the largest for G = 0 and
small values of C/§. This reflects fractures in which the
influence of in-plane curvature is negligible and the inter-
face geometry can be predicted by standard invasion per-
colation. In these fractures, the entrapped phase occupies
tortuous clusters that span a broad range of length scales.
Dissolution of these clusters can result in nonlocal changes
in saturation due to the subtle disconnection between local
mass transfer rates and the resulting interface movement. As
noted in section 4.2.1 (see also Figures 6a and 6b), the
overall evolution of blob shape is strongly influenced by
capillary forces because the blobs do not necessarily recede
away from regions of high mass transfer. Clearly the
constitutive relationships used in the continuum model are
incapable of accurately replicating the influence of these
subtle processes, especially the role of capillary forces, in
controlling blob shape evolution. However, despite this
implicit simplification in the continuum model, when con-
tinuum simulations do not include large regions of the
coarse grid in which S, is greater than the percolation
threshold and %, = 0, this limitation results in negligible
discrepancies. Furthermore, these limitations arise in small
C/6 fractures which involve a combination of very small
mean aperture relative to correlation length and aperture
variability and/or weakly wetting fluids; measurements of
natural fracture surfaces [e.g., Brown, 1995] suggest that
C/6 in natural fractures (assuming perfect wettability of one
of the fluids) is typically greater than 0.5.

[44] Our parametric studies focused entirely on initial
entrapped phase structures that resulted from either capillary
displacements (G = 0) or gradient stabilized displacements
(negative G). There are also problems of interest in which a
phase becomes entrapped as the result of an unstable
displacement, such as when a DNAPL migrates through
steeply dipping fractures [e.g., Ji et al., 2004; Nicholl and
Glass, 2005]. This can result in the formation of fingers
along the displacement front and a much less uniform
distribution of the phases than was observed in our simu-
lations. Our proposed constitutive relationships are not
appropriate for predicting mass transfer from the entrapped
phase in this situation owing to the large contiguous regions
(S, = 1) of entrapped phase. However, as in the case of
DNAPL dissolution, often we are interested in mass transfer
from the invading phase after the source is removed and the
initial invading phase becomes entrapped by capillary
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forces. In this case, our continuum model should predict
flow and mass transfer reasonably well if the scale of the
simulation grid is finer than the scale of the fingers that
formed during the initial displacement. Furthermore, it is
likely that a significant portion of the DNAPL will drain
from the initial fingers and will become entrapped in
subhorizontal fractures, leading to entrapped phase struc-
tures within these fractures that are quite similar to those
investigated in this paper (e.g., see Figure 2).

[45] Finally, our models neglect the influence of inter-
actions with a potentially porous/permeable matrix bound-
ing the fracture. This is a reasonable approximation for very
low porosity/permeability media, but in some fractured
systems, such as clays, significant interphase mass transfer
from the entrapped phase may occur from regions of the
interfaces that are coincident with the fracture matrix
boundary [e.g., O’Hara et al., 2000; Parker et al., 1997].
Under these conditions, determining the relative rates of
mass transfer by direct diffusion into the porous matrix and
mass transfer into the fluid flowing through the fractures
becomes important to understanding the long-term fate of
an entrapped nonaqueous phase such as DNAPLs or CO,.
The continuum model presented here provides a robust
approach for quantifying rates of mass transfer into the
fracture fluid by advection and diffusion that can be directly
compared to estimates of mass transfer by matrix diffusion
alone. Furthermore, the ability of the continuum model to
successfully predict mass transfer into the flowing phase in
the fracture supports extending our modeling approach to
directly include the influence of diffusive mass transfer into
the porous matrix.

Appendix A

[46] As discussed in section 2, the depth-averaged flow
and transport equations used to simulate mass transfer
require simplifying assumptions that may influence local
mass transfer calculations. To explore the sensitivity of
mass transfer calculations to these simplifications, we
consider calculations of mass transfer from the edges of a
thin rectangular duct (Figure Al) with width, a, height
(aperture), b and mass transfer from the edges at z = —a/2,
a/2, which represent idealized fluid-fluid interfaces. Though
this is a simplification of the geometry in the variable
aperture fractures, where surface roughness creates both
aperture variability and in-plane curvature of the fluid-fluid
interfaces, it provides the ability to directly quantify the
relative influence of velocity and concentration gradients
that result from approximations to the velocity field in the
vicinity of the fluid-fluid interface (i.e., z = —a/2, a/2). We
consider three cases: (1) zero velocity on the fracture
surfaces (y = —b/2, b/2) and at the fluid-fluid interfaces;
(2) zero velocity on the fracture surfaces and zero shear on
the edges of the duct; and (3) uniform velocity throughout
the duct. Case 1 represents an extreme scenario, which is an
approximate representation of an entrapped fluid with a
much higher viscosity than the flowing fluid, though even
for large viscosity contrasts, momentum transfer between
the fluids will lead to a nonzero velocity at the interface.
Case 2 represents an entrapped fluid with a similar or lower
viscosity than the flowing fluid, resulting in negligible
impact on velocities at the interface. Case 3 is identical to
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Figure A1. Schematic of geometry used for mass transfer
calculations in an idealized geometry with three different
velocity fields. Mass transfer occurs from the walls at z =
al2, —a/2, and flow is parallel to the x axis.

the approximations used by our depth-averaged mass trans-
fer model.

[47] We use a simplified approximation to the analytical
solution for flow through a rectangular duct [e.g., Kakag et
al., 1987] to represent the velocities for case 1:

S B[ ) e () ()
m=1.7+ 0.5(b/a)*1-4
? for b/a < 1/3

(A1)
2403(b/a—1/3) forbja>1/3
which results in estimates of velocity that differ by less than
1% from the exact analytical solution for Stokes flow in this
geometry. For case 2, we assume the two fluids have similar
viscosities (i.e., full slip condition at z = —a/2, a/2), which
leads to a simplification of the velocity field:

umax 3

- {1‘@2} w2

To calculate steady state mass transfer from the fluid-fluid
interfaces in each of the three cases, we used a finite
difference discretization of the three-dimensional advection-
diffusion equation:

(A2)

u-Ve—V-(D-Vc)=0; c=¢; forz=—a/2,z=a/2

(A3)
with mass transfer from the interface quantified as
) acC
J:Da—:k(cs —¢iy) atz= —a/2 and a/2 (A4)
Z

To ensure sufficient resolution of the velocity fields and
minimize the effects of numerical dispersion, the simulation
used a grid spacing of b/40 and values of a such that b/a =
0.1 and 1. To compare results from the different simulations,
we calculated the average dimensionless Sherwood number
for each simulation:

L b/2

(Sh):%// %dxdy

0-b/2
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Figure A2. Average Sh plotted against Pe for three
different approximations to the velocity field in a rectan-
gular duct for two different aspect ratios.

which provides a measure of the total mass transfer for each
simulation. Mass transfer simulations for values of Pe =
u,,b/D,, ranging from 0.1 to 100 demonstrate the influence
of local differences in the velocity field in the vicinity of the
interface on mass transfer rates (Figure A2). For small
values of Pe, all three cases yield indistinguishable values of
(Sh). However, at larger values of Pe (Pe = 10 for b/a = 1
and Pe = 100 for b/a = 0.1) the reduced velocities near the
interface resulting from the no-slip boundary condition in
the case 1 simulations leads to decreased mass transfer.
When we assume that the fluid-fluid interface has a
negligible influence on the velocity field near the interface
(i.e., case 2), the mass transfer rates are insensitive to the
presence or absences of a parabolic velocity profile across
the fracture aperture for the range of Pe explored here.
Because it is likely that momentum transfer across the fluid-
fluid interface will lead to nonzero velocities at the
interface, it is reasonable to assume that case 2 provides a
simplified representation of the conditions in fractures
occupied by regions of an entrapped dissolving fluid. Thus,
the results presented here suggest that the simplifications
resulting from depth averaging the flow and transport
equations lead to negligible overestimations of local mass
transfer rates. These observations are further supported by
the excellent agreement demonstrated in our previously
published comparison between experiment and simulation
[Detwiler et al., 2001].
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